direct product, non-abelian, soluble, monomial, rational
Aliases: C22×S3≀C2, C62⋊3D4, S32⋊C23, C32⋊C4⋊C23, C32⋊(C22×D4), C3⋊S3.1C24, C3⋊S3⋊(C2×D4), (C3×C6)⋊(C2×D4), (C2×C3⋊S3)⋊8D4, (C22×S32)⋊10C2, (C2×S32)⋊13C22, (C22×C32⋊C4)⋊5C2, (C2×C32⋊C4)⋊4C22, (C2×C3⋊S3).32C23, (C22×C3⋊S3).60C22, SmallGroup(288,1031)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3⋊S3 — C22×S3≀C2 |
C32 — C3⋊S3 — C22×S3≀C2 |
Generators and relations for C22×S3≀C2
G = < a,b,c,d,e,f | a2=b2=c3=d3=e4=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ece-1=d, fcf=ede-1=c-1, df=fd, fef=e-1 >
Subgroups: 1952 in 370 conjugacy classes, 83 normal (8 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C2×C4, D4, C23, C32, D6, C2×C6, C22×C4, C2×D4, C24, C3×S3, C3⋊S3, C3⋊S3, C3×C6, C22×S3, C22×C6, C22×D4, C32⋊C4, S32, S32, S3×C6, C2×C3⋊S3, C62, S3×C23, S3≀C2, C2×C32⋊C4, C2×S32, C2×S32, S3×C2×C6, C22×C3⋊S3, C2×S3≀C2, C22×C32⋊C4, C22×S32, C22×S3≀C2
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22×D4, S3≀C2, C2×S3≀C2, C22×S3≀C2
(1 7)(2 8)(3 6)(4 5)(9 13)(10 14)(11 15)(12 16)(17 22)(18 23)(19 24)(20 21)
(1 4)(2 3)(5 7)(6 8)(9 24)(10 21)(11 22)(12 23)(13 19)(14 20)(15 17)(16 18)
(2 15 13)(3 17 19)(6 22 24)(8 11 9)
(1 14 16)(4 20 18)(5 21 23)(7 10 12)
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 5)(2 6)(3 8)(4 7)(9 17)(10 20)(11 19)(12 18)(13 22)(14 21)(15 24)(16 23)
G:=sub<Sym(24)| (1,7)(2,8)(3,6)(4,5)(9,13)(10,14)(11,15)(12,16)(17,22)(18,23)(19,24)(20,21), (1,4)(2,3)(5,7)(6,8)(9,24)(10,21)(11,22)(12,23)(13,19)(14,20)(15,17)(16,18), (2,15,13)(3,17,19)(6,22,24)(8,11,9), (1,14,16)(4,20,18)(5,21,23)(7,10,12), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,5)(2,6)(3,8)(4,7)(9,17)(10,20)(11,19)(12,18)(13,22)(14,21)(15,24)(16,23)>;
G:=Group( (1,7)(2,8)(3,6)(4,5)(9,13)(10,14)(11,15)(12,16)(17,22)(18,23)(19,24)(20,21), (1,4)(2,3)(5,7)(6,8)(9,24)(10,21)(11,22)(12,23)(13,19)(14,20)(15,17)(16,18), (2,15,13)(3,17,19)(6,22,24)(8,11,9), (1,14,16)(4,20,18)(5,21,23)(7,10,12), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,5)(2,6)(3,8)(4,7)(9,17)(10,20)(11,19)(12,18)(13,22)(14,21)(15,24)(16,23) );
G=PermutationGroup([[(1,7),(2,8),(3,6),(4,5),(9,13),(10,14),(11,15),(12,16),(17,22),(18,23),(19,24),(20,21)], [(1,4),(2,3),(5,7),(6,8),(9,24),(10,21),(11,22),(12,23),(13,19),(14,20),(15,17),(16,18)], [(2,15,13),(3,17,19),(6,22,24),(8,11,9)], [(1,14,16),(4,20,18),(5,21,23),(7,10,12)], [(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,5),(2,6),(3,8),(4,7),(9,17),(10,20),(11,19),(12,18),(13,22),(14,21),(15,24),(16,23)]])
G:=TransitiveGroup(24,654);
(1 8)(2 5)(3 6)(4 7)(9 24)(10 21)(11 22)(12 23)(13 19)(14 20)(15 17)(16 18)
(1 3)(2 4)(5 7)(6 8)(9 15)(10 16)(11 13)(12 14)(17 24)(18 21)(19 22)(20 23)
(1 20 21)(2 22 17)(3 23 18)(4 19 24)(5 11 15)(6 12 16)(7 13 9)(8 14 10)
(1 21 20)(2 22 17)(3 18 23)(4 19 24)(5 11 15)(6 16 12)(7 13 9)(8 10 14)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 2)(3 4)(5 8)(6 7)(9 12)(10 11)(13 16)(14 15)(17 20)(18 19)(21 22)(23 24)
G:=sub<Sym(24)| (1,8)(2,5)(3,6)(4,7)(9,24)(10,21)(11,22)(12,23)(13,19)(14,20)(15,17)(16,18), (1,3)(2,4)(5,7)(6,8)(9,15)(10,16)(11,13)(12,14)(17,24)(18,21)(19,22)(20,23), (1,20,21)(2,22,17)(3,23,18)(4,19,24)(5,11,15)(6,12,16)(7,13,9)(8,14,10), (1,21,20)(2,22,17)(3,18,23)(4,19,24)(5,11,15)(6,16,12)(7,13,9)(8,10,14), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,2)(3,4)(5,8)(6,7)(9,12)(10,11)(13,16)(14,15)(17,20)(18,19)(21,22)(23,24)>;
G:=Group( (1,8)(2,5)(3,6)(4,7)(9,24)(10,21)(11,22)(12,23)(13,19)(14,20)(15,17)(16,18), (1,3)(2,4)(5,7)(6,8)(9,15)(10,16)(11,13)(12,14)(17,24)(18,21)(19,22)(20,23), (1,20,21)(2,22,17)(3,23,18)(4,19,24)(5,11,15)(6,12,16)(7,13,9)(8,14,10), (1,21,20)(2,22,17)(3,18,23)(4,19,24)(5,11,15)(6,16,12)(7,13,9)(8,10,14), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,2)(3,4)(5,8)(6,7)(9,12)(10,11)(13,16)(14,15)(17,20)(18,19)(21,22)(23,24) );
G=PermutationGroup([[(1,8),(2,5),(3,6),(4,7),(9,24),(10,21),(11,22),(12,23),(13,19),(14,20),(15,17),(16,18)], [(1,3),(2,4),(5,7),(6,8),(9,15),(10,16),(11,13),(12,14),(17,24),(18,21),(19,22),(20,23)], [(1,20,21),(2,22,17),(3,23,18),(4,19,24),(5,11,15),(6,12,16),(7,13,9),(8,14,10)], [(1,21,20),(2,22,17),(3,18,23),(4,19,24),(5,11,15),(6,16,12),(7,13,9),(8,10,14)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,2),(3,4),(5,8),(6,7),(9,12),(10,11),(13,16),(14,15),(17,20),(18,19),(21,22),(23,24)]])
G:=TransitiveGroup(24,657);
36 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2K | 2L | 2M | 2N | 2O | 3A | 3B | 4A | 4B | 4C | 4D | 6A | ··· | 6F | 6G | ··· | 6N |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | ··· | 6 |
size | 1 | 1 | 1 | 1 | 6 | ··· | 6 | 9 | 9 | 9 | 9 | 4 | 4 | 18 | 18 | 18 | 18 | 4 | ··· | 4 | 12 | ··· | 12 |
36 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | D4 | D4 | S3≀C2 | C2×S3≀C2 |
kernel | C22×S3≀C2 | C2×S3≀C2 | C22×C32⋊C4 | C22×S32 | C2×C3⋊S3 | C62 | C22 | C2 |
# reps | 1 | 12 | 1 | 2 | 3 | 1 | 4 | 12 |
Matrix representation of C22×S3≀C2 ►in GL8(ℤ)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 |
0 | 0 | 0 | 0 | -1 | -1 | -2 | -1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(8,Integers())| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,-1,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,-1,0],[0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,-1,-2,1,1,0,0,0,0,1,-1,0,0],[-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1] >;
C22×S3≀C2 in GAP, Magma, Sage, TeX
C_2^2\times S_3\wr C_2
% in TeX
G:=Group("C2^2xS3wrC2");
// GroupNames label
G:=SmallGroup(288,1031);
// by ID
G=gap.SmallGroup(288,1031);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,253,2693,2028,201,797,622]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^3=d^3=e^4=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,e*c*e^-1=d,f*c*f=e*d*e^-1=c^-1,d*f=f*d,f*e*f=e^-1>;
// generators/relations